Multi-encoder Context Aggregation Network for Structured and Unstructured Urban Street Scene Analysis
نویسندگان
چکیده
Developing computationally efficient semantic segmentation models that are suitable for resource-constrained mobile devices is an open challenge in computer vision research. To address this challenge, we propose a novel real-time scene model called Multi-encoder Context Aggregation Network (MCANet), which offers the best combination of low complexity and state-of-the-art (SOTA) performance on benchmark datasets. While follow multi-encoder approach, our novelty lies varying number scales to capture both global context local details effectively. We introduce lateral connections between sub-encoders improved feature refinement. also optimize backbone by exploiting residual block MobileNet applications. On decoder side, proposed includes new Local Global (LGCA) module significantly enhances output. Finally, use several known convolution techniques classification make more efficient. provide comprehensive evaluation MCANet multiple datasets containing structured unstructured urban street scenes. Among existing with less than 3 million parameters, competitive as it achieves SOTA without ImageNet pre-trained weights environments while being compact
منابع مشابه
A Multi-Scale Analysis of 27, 000 Urban Street Networks
OpenStreetMap offers an underexplored source of worldwide geospatial data useful to urban researchers. This study uses the OSMnx software to automatically download and analyze 27,009 US street networks from OpenStreetMap at metropolitan, municipal, and neighborhood scales—namely, every US city and town (N = 19655), census urbanized area (N = 497), and Zillow-defined neighborhood (N = 6857). It ...
متن کاملObject Recognition in 3D Point Cloud of Urban Street Scene
In this paper we present a novel street scene semantic recognition framework, which takes advantage of 3D point clouds captured by a high-definition LiDAR laser scanner. An important problem in object recognition is the need for sufficient labeled training data to learn robust classifiers. In this paper we show how to significantly reduce the need for manually labeled training data by reduction...
متن کاملNeuron-level Selective Context Aggregation for Scene Segmentation
Contextual information provides important cues for disambiguating visually similar pixels in scene segmentation. In this paper, we introduce a neuron-level Selective Context Aggregation (SCA) module for scene segmentation, comprised of a contextual dependency predictor and a context aggregation operator. The dependency predictor is implicitly trained to infer contextual dependencies between dif...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولStructured Network Public Spaces a Step Toward Integration of Urban
Network of public spaces composes of a network of interconnected land use and various elements of the city, such as synthetic and natural which shows the city as a whole. Network structure of public spaces is important because understanding this network as a structure presents us the formation of the city. This paper attempts to define the status of the network of public spaces in the city stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3289968